অসমতার ধারণা

নবম-দশম শ্রেণি (দাখিল ২০২৫) - উচ্চতর গণিত অসমতা | - | NCTB BOOK
19
19

মনে করি একটি ক্লাসের ছাত্রসংখ্যা 200 জন। স্বাভাবিকভাবে দেখা যায় যে, ঐ ক্লাসে সবদিন সকলে উপস্থিত থাকে না, সকলে অনুপস্থিতও থাকে না। একটি নির্দিষ্ট দিনে উপস্থিত ছাত্র সংখ্যা x হলে আমরা লিখতে পারি 0 < x < 200। একইভাবে আমরা দেখি যে, কোনো নিমন্ত্রিত অনুষ্ঠানেই সবাই উপস্থিত হয় না। পোশাক-পরিচ্ছদ ও অন্যান্য অনেক ভোগ্যপণ্য তৈরিতে পরিষ্কারভাবে অসমতার ধারণা প্রয়োজন হয়। দালান তৈরির ক্ষেত্রে, পুস্তক মুদ্রণের ক্ষেত্রে এবং এরকম আরও অনেক ক্ষেত্রে উপাদানগুলো সঠিক পরিমাণে নির্ণয় করা যায় না বিধায় প্রথম পর্যায়ে অনুমানের ভিত্তিতে উপাদানগুলো ক্রয় বা সংগ্রহ করতে হয়। অতএব দেখা যাচ্ছে যে, আমাদের দৈনন্দিন জীবনে অসমতার ধারণাটা খুবই গুরুত্বপূর্ণ।
বাস্তব সংখ্যার ক্ষেত্রে
a>b যদি ও কেবল যদি (a-b)ধনাত্মক অর্থাৎ (a-b)>0

a<b যদি ও কেবল যদি (a-b)ঋণাত্মক অর্থাৎ (a-b)<0

অসমতার কয়েকটি বিধি :

ক)a<b b>a

খ) a>b হলে যেকোনো c এর জন্য

a+c>b+c এবং a-c>b-c

গ) a>b হলে যেকোনো c এর জন্য

ac>bc এবং ac>bc যখন c>0

ac<bc এবং ac<bc যখন c<0


উদাহরণ ১. x < 2 হলে
 ক) x + 2 <4 [উভয়পক্ষে 2 যোগ করে]
 খ) x – 2 < 0 [উভয়পক্ষে 2 বিয়োগ করে]
 গ) 2x < 4 [উভয়পক্ষকে 2 দ্বারা গুণ করে ]
 ঘ) – 3x > – 6 [উভয়পক্ষকে – 3 দ্বারা গুণ করে ]
এখানে উল্লেখ্য যে,
a b এর অর্থ a > b অথবা a = b
a b এর অর্থ a< b অথবা a = b
a < b < c এর অর্থ a < b এবং b < c যার অর্থ a < c


উদাহরণ ২. 3 1 সত্য যেহেতু 3 > 1
2 4 সত্য যেহেতু 2 <4
2<3 <4 সত্য যেহেতু 2<3 এবং 3 < 4
 

উদাহরণ ৩. সমাধান কর ও সমাধান সেটটি সংখ্যারেখায় দেখাও: 4x + 4> 16

সমাধান: দেওয়া আছে, 4x + 4 > 16
বা, 4x + 4 – 4 > 16 – 4 [উভয়পক্ষ থেকে 4 বিয়োগ করে]
বা, 4x > 12
 বা,4x4>123 [উভয়পক্ষকে 4 দ্বারা ভাগ করে] 

বা,x>3

নির্ণেয় সমাধান x>3

এখানে সমাধান সেট, S={xR:x>3}

 

    

Content added || updated By
Promotion